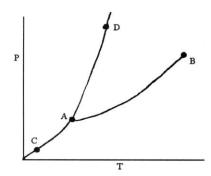
Final Exam Test Questions Review

1.	Which type of matter can be separated into its parts using physical methods like filtration or settling? a. Elements b. Compounds c. Heterogenous mixture d. Homogenous mixture e. Solutions			
2.	Which of the following are chemical processes?			
	a. Compression of oxygen gas			
	b. Freezing of waterc. Melting of butter			
	d. Rusting of a nail			
3.	In which one of the following are all the zeroes significant? a. 0.15632 b. 0.1000 c. 00.0030020 d. 0.083624 e. 100.090090			
4.	There are electrons protons, and neutrons in an atom of $^{132}_{54}$ Xe a. 132,132,54 b. 54,54,132 c. 78,78,54 d. 54,54,78 e. 78,78,132			
5.	Element Z has two naturally occurring isotopes: Z-63 with a mass of 62.93 amu and a natural abundance of 69.17% Z-65 with a mass of 64.93 amu and a natural abundance of 30.83% Calculate the average atomic mass of element			

Which formula/name pair is incorrect?			
a. Mn(NO ₂) ₂	manganese (II) nitrit	te	
	_		
	_	nganate	
The combustion of propane (C3H8) in the presence of excess oxygen fields CO2 and H2O:			
$C_3H_8(g) + O_2$	> CO ₂ (g) +	H_2O (g)	
When 2.5 mol of O2 produced?	are consumed in the	eir reaction, mol of CO2 are	
An aqueous ethanol	solution (400 ml) wa	s diluted to 4.00 L, giving a concentration	
of 0.0400 M. The concentration of the original solution was M. a. 0.400 M			
b. 0.200 M			
c. 2.00 M			
d. 4.00 M			
A chemical reaction	that absorbs heat fro	om the surroundings is said to be	
and has a	ΔH at constant temp	perature.	
a. Exothermic, neutral			
b. Exothermic, positive			
c. Endothermic, negative			
d. Endothermic, po	sitive		
. True or false: The gro	ound state electron o	of Cu is [Ar] 4s ¹ 3d ¹⁰	
	a. Mn(NO ₂) ₂ b. Mg(NO ₃) ₂ c. Mn(NO ₃) ₂ d. Mg ₃ N ₂ The combustion of ph2O: C ₃ H ₈ (g) + O ₂ When 2.5 mol of O2 produced? An aqueous ethanol of 0.0400 M. The corra. 0.400 M b. 0.200 M c. 2.00 M d. 4.00 M A chemical reaction and has a a. Exothermic, neute b. Exothermic, posic. Endothermic, posic. Endothermic, posic.	H2O: C ₃ H ₈ (g) + O ₂ > CO ₂ (g) + When 2.5 mol of O2 are consumed in the produced? An aqueous ethanol solution (400 ml) was of 0.0400 M. The concentration of the oria. 0.400 M b. 0.200 M c. 2.00 M d. 4.00 M A chemical reaction that absorbs heat from and has a ΔH at constant tempora. Exothermic, neutral b. Exothermic, positive	

 11. The value of ΔH for the reaction below is –790 KJ. The enthalpy change accompanying the reaction of 0.95 g of S is KJ. 2 S (s) + 3 O₂ (g)> 2 SO₃ (g) a. 23 KJ b23 KJ c. 12 KJ d12 KJ 			
12. The wavelegth of light has a frequency of 1.66 x 10° s-1 is m. a. 6.63 m b. 0.182 m c. 2.00 x 10° m d. 5.53 x 10° m			
13. In general, as you go across a period in the periodic table from left to right:I. The atomic radius			
II. The electron affinity becomes negative III. The first ionization energy			
14. Which of the following would have to lose two electrons in order to achieve a noble gas electron configuration? O Sr Na Se Br			
15. Arrange the following gases in order of increasing average molecular speed at 25°C He, O_2 , CO_2 , N_2			
16. A sample of a gas originally at 29°C and 1.25 atm pressure in a 3.0 L container is allowed to contract until the volume is 2.2 L and the temperature is 11°C. The final pressure of the gas is atm.			
17. The strongest interparticle attractions (IMFs) exist between particles of a and the weakest interparticle attractions exist between particles of a			

18. True or false: All molecules experience London Dispersion forces.


19. Of the following substances, _____ has the highest boiling point.

- a. O_2
- b. Cl₂
- c. N₂
- d. Br₂

20. What is the formal charge of nitrogen in NO₃ ? Draw the Lewis structure

21. True or false: A volatile liquid is one that is highly viscous.

22. On the phase diagram shown below, segment _____ corresponds to the conditions of temperature and pressure under which the solid and the gas of the substance are in equilibrium

