Exam 3 Test Prep

Write the electron configuration for Mg ²⁺
Write the condensed electron configuration for Sb ²⁺
What is the element with the electron configuration [Ne] 3s ² 3p ³ ?
What letter applies to the transition metals for writing electron configuration?
What is the periodic trend for atomic radius and ionic radius?
What is the periodic trend for electron affinity, ionization energy, and electronegativity?

Draw a line to match the terms with the correct definition:					
Atomic radius	Remove an electron from the ground state of gaseous atom				
Ionization energy	Attract shared electrons				
Electron affinity	Distance between the nucleus and a ring				
Electronegativity	Addition of an electron to a gaseous atom (exothermic)				
Which has the largest atom	ic radius? K, Be, or P?				
Rank the following from larg	gest to smaller atomic radius. K ⁺ , Ar, Cl ⁻ , or Ca ²⁺				
Arrange the elements in dec	creasing electron affinity: C, O, Na, F				
Which element has the high	nest ionization energy? Mg, Al, or Si?				

Arrange the following ions in order of increasing ionic radius: Li⁺, B³⁺, O²⁻, F⁻

Draw a line to match the terms with the correct description:	

1.) Ionic Bonding	Sea of delocalized electrons			
	Metal and Metal			
2.) Covalent Bonding	Nonmetal and Nonmetal			
	Electrons transferred			
3.) Metallic Bonding	Electrons shared			
	Nonmetal and Metal			
List the exceptions to the octet rule:				
Draw the Lewis dot structures for following compounds: Ne, Na, Na ⁺				
Draw the Lewis dot structure for: lithium b	promide, sodium nitride, and tin (IV) oxide.			
	. ,			

Draw the resonance structure of carbon dioxide

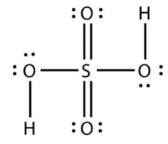
Which is the more dominant structure?

$$[:\ddot{N}=c=\ddot{S}:]^{-}$$
 $[:\ddot{C}=N=\ddot{S}:]^{-}$ $[:\ddot{C}=S=\ddot{N}:]^{-}$

The Lewis structure of carbonate anion ${\rm CO_3^{2^-}}$ is shown. What is the formal charge of the single bonded oxygen atom?

Single bond: _____ bond length and _____

Triple bond: _____ bond length and _____

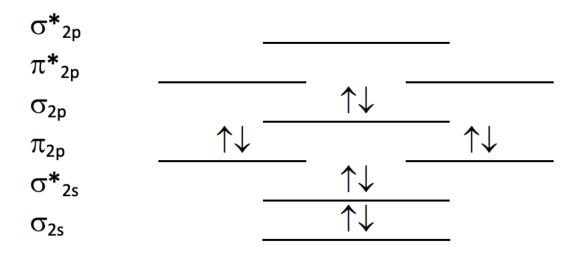

Sigma bonds are formed by	overlap
Pi bonds are formed by	overlap

Fill in the chart:

e- domain geometry	Molecular geometry	Bond angle	Hybridization
		180	
		120	
	Bent		Sp2
Tetrahedral			
		107	
		105	

Using the VSEPR model, give the molecular geometry, bond angles, and hybridization, and determine whether molecule is polar or nonpolar for AsCl₃.

How many sigma and pi bonds are in sulfuric acid? What is the electron-domain geometry of single bonded oxygen?



How many sigma and pi bonds are in C₃H₈? What is the hybridization of the second carbon?

How many sigma and pi bonds are in the molecule given below?

$$\begin{array}{c} \vdots \overset{\bullet}{\text{OH}} \\ \vdots \overset{\bullet}{\text{O}} = \overset{\bullet}{\text{C}}_1 & \text{H} \\ \vdots \overset{\bullet}{\text{H}} - \overset{\bullet}{\text{C}} - \overset{\bullet}{\text{C}} - \overset{\bullet}{\text{C}} - \overset{\bullet}{\text{C}} \\ \vdots \overset{\bullet}{\text{NH}}_2 & \text{H} & \overset{\bullet}{\text{C}} - \overset{\bullet}{\text{C}} - \overset{\bullet}{\text{C}} \\ \vdots & \overset{\bullet}{\text{H}} & \overset{\bullet}{\text{H}} \end{array}$$

Which molecule will have the following valence molecular orbital energy level diagram?

A.) N_2 B.) B_2 C.) O_2 D.) C_2