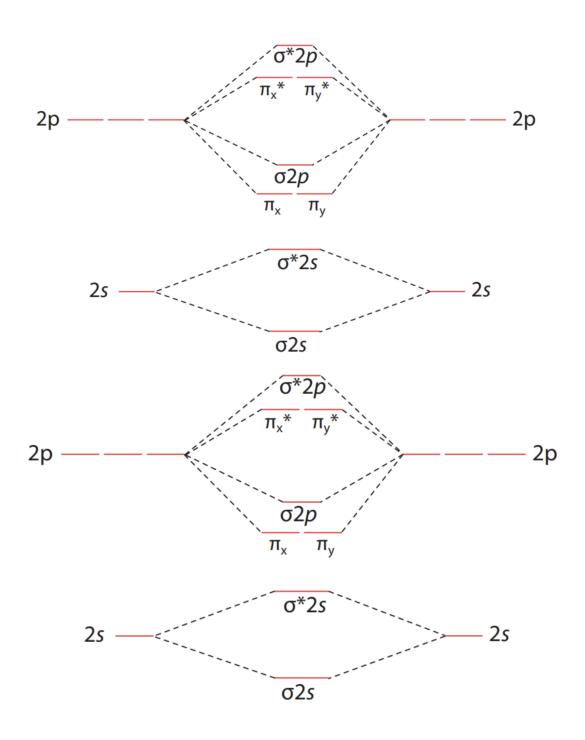
Ch. 9 Hybridization and Molecular Orbital Theory

What is Hybridization?
B:
C:
What is the shape of s orbitals?
What is the shape of p orbitals?
What are the characteristics of Sigma bonds?
What are the characteristics of Pi bonds?
What is the formula for Bond Order?

Draw a Lewis Structure for each molecule. Then draw the energy-level diagrams for the bolded and show how all bonds form.
co
HCN

 $\textbf{C} H_3 \textbf{N} H_2$


Draw the energy-level diagrams for the following molecules, determine the bond order of the covalent bond in each. Determine whether it's paramagnetic or diamagnetic.

1) Be₂

2) NO⁻

3) H₂ ²⁻

Use the following outline to diagram the species C_2 , C_2 . Determine the bond order of each and indicate whether they are stable. Note that C is one of the exceptions in which the $\pi 2p$ orbital will fill before the σ 2p orbitals.

